http://www.zh61.com.cn- 真好未来星

未来星网 真好未来星 Rss 2.0 会员中心 会员注册
搜索: 您现在的位置: 真好未来星 >> 数理化 >> 数学 >> 微积分 >> 正文

不定积分是什么

作者:佚名    文章来源:本站原创    点击数:    更新时间:2018-09-13

在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。这样,许多函数的定积分的计算就可以简便地通过求不定积分来进行。

中文名称:不定积分

表达式:∫f(x)dx=F(x)+C


应用学科:数学

微积分基本定理:不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。

 

不定积分基本概念:
在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。这样,许多函数的定积分的计算就可以简便地通过求不定积分来进行。

设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+ C(C为任意常数)叫做函数f(x)的不定积分,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分。

由定义可知:

求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C,就得到函数f(x)的不定积分。


主要性质:

1、函数的和的不定积分等于各个函数的不定积分的和;

2、求不定积分时,被积函数中不为零的常数因子可以提到积分号外面来;

折叠编辑本段求解
设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+ C(其中,C为任意常数)叫做函数f(x)的不定积分,又叫做函数f(x)的反导数,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。

 

其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。
由定义可知:

求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C,就得到函数f(x)的不定积分。

积分公式:
∫ a dx = ax + C,a和C都是常数

∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1

∫ 1/x dx = ln|x| + C

∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

∫ e^x dx = e^x + C

∫ cosx dx = sinx + C

∫ sinx dx = - cosx + C

∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

∫ tanx dx = - ln|cosx| + C = ln|secx| + C

∫ secx dx =ln|cot(x/2)| + C = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = - ln|secx - tanx| + C = ln|secx + tanx| + C

∫ cscx dx = ln|tan(x/2)| + C = (1/2)ln|(1 - cosx)/(1 + cosx)| + C = - ln|cscx + cotx| + C = ln|cscx - cotx| + C

∫ sec^2(x) dx = tanx + C

∫ csc^2(x) dx = - cotx + C

∫ secxtanx dx = secx + C

∫ cscxcotx dx = - cscx + C

∫ dx/(a^2 + x^2) = (1/a)arctan(x/a) + C

∫ dx/√(a^2 - x^2) = arcsin(x/a) + C

∫ dx/√(x^2 + a^2) = ln|x + √(x^2 + a^2)| + C

∫ dx/√(x^2 - a^2) = ln|x + √(x^2 - a^2)| + C

∫ √(x^2 - a^2) dx = (x/2)√(x^2 - a^2) - (a^2/2)ln|x + √(x^2 - a^2)| + C

∫ √(x^2 + a^2) dx = (x/2)√(x^2 + a^2) + (a^2/2)ln|x + √(x^2 + a^2)| + C

∫ √(a^2 - x^2) dx = (x/2)√(a^2 - x^2) + (a^2/2)arcsin(x/a) + C

 

运算法则
不定积分的运算法则,又称为“不定积分的性质”,包含如下两个性质(注意性质适用条件):

又称为“不定积分的性质”,包含如下两个性质(注意性质适用条件)
  (1).设函数f(x)的原函数存在(即f(x)可积,下同),k是常数,则
  a.∫kf(x)dx=k∫f(x)dx {K≠0}
  b..∫0×f(x)dx=0×∫f(x)dx +C {K=0}
  (2).设f(x),g(x)两个函数存在原函数,则
  ∫[f(x)+g(x)]dx=∫f(x)dx+∫g(x)dx

Tags:不定积分,微积分  
责任编辑:admin
  • 上一个文章: 没有了
  • 下一个文章:
  • 请文明参与讨论,禁止漫骂攻击,不要恶意评论、违禁词语。 昵称:
    1分 2分 3分 4分 5分

    还可以输入 200 个字
    [ 查看全部 ] 网友评论
    最新推荐
    热门文章
    • 此栏目下没有热点文章
    关于我们 - 联系我们 - 广告服务 - 友情链接 - 网站地图 - 版权声明 - 在线帮助 - 文章列表
    返回顶部
    刷新页面
    下到页底
    晶体管查询