又称平动点,在天体力学中是限制性三体问题的五个特解。一个小物体在两个大物体的引力作用下在空间中的一点,在该点处,小物体相对于两大物体基本保持静止。这些点的存在由瑞士数学家欧拉于1767年推算出前三个,法国数学家拉格朗日于1772年推导证明剩下两个。1906年首次发现运动于木星轨道上的小行星(见特洛依群小行星)在木星和太阳的作用下处于拉格朗日点上。在每个由两大天体构成的系统中,按推论有5个拉格朗日点,但只有两个是稳定的,即小物体在该点处即使受外界引力的摄扰,仍然有保持在原来位置处的倾向。每个稳定点同两大物体所在的点构成一个等边三角形。
中文名:拉格朗日点
外文名:Lagrangian point
推算时间:1767年
推算人:欧拉,拉格朗日
首次发现:1906年
所属问题:平面圆型三体问题的特解
发现
1906年首次发现运动于木星轨道上的小行星(见特洛依群小行星)在木星和太阳的作用下处于拉格朗日点上。在每个由两大天体构成的系统中,按推论有5个拉格朗日点,但只有两个是稳定的,即小物体在该点处即使受外界引力的摄扰,仍然有保持在原来位置处的倾向。每个稳定点同两大物体所在的点构成一个等边三角。
18世纪法国数学家、力学家和天文学家拉格朗日(拉格朗治)在1772年发表的论文“三体问题”中,为了求得三体问题的通解,他用了一个非常特殊的例子作为问题的结果,即:如果某一时刻,三个运动物体恰恰处于等边三角形的三个顶点,那么给定初速度,它们将始终保持等边三角形队形运动。A.D 1906年,天文学家发现了第588号小行星和太阳正好等距离,它同木星几乎在同一轨道上超前60°运动,它们一起构成运动着的等边三角形。同年发现的第617号小行星也在木星轨道上落后60°左右,构成第2个拉格朗日(拉格朗治)正三角形。20世纪80年代,天文学家发现土星和它的大卫星构成的运动系统中也有类似的正三角形。人们进一步发现,在自然界各种运动系统中,都有拉格朗日(拉格朗治)点。
现象
L1、L2和L3在两个天体的连线上,为不稳定点。若垂直于中线地推移测试质点,则有一力将其推回平衡点;但若测试质点漂向任一星体,则该星体之引力会将其拉向自己。不过,虽然它们是不稳定的,但可选取适当的初始扰动,使相应平动点附近的运动仍为周期运动或拟周期运动。即选取这样的初始扰动使系统原来的解退化为周期解,相应的运动变为稳定的,此时这种稳定称为条件稳定。
对于L4、L5,当0<μ<μ*时(其中μ*满足μ*(1-μ*)=1/27),L4、L5是线性稳定的。对于太阳系中处理成限制性三体问题的各个系统,如日-木-小行星,日-地-月球,……,相应的μ均满足条件0<μ<μ*(μ*满足μ*(1-μ*)=1/27)。对于μ*<μ<1/2的情况,显然是不稳定的。
所谓拉格朗日点,就是在大型天体之间那些引力平衡的,且能让小行星做稳定圆周运动的点。比如质量大的行星其运行轨道只需要考虑其与太阳之间的引力关系,而绕着大行星运转的小行星除了受到太阳引力,也受到大行星引力影响,所以在两股引力交叠的影响下,可以解出五个受力平衡点。处于这5个位置的小行星,相对于太阳及大行星的位置是不变的,其公转周期与大行星绕日公转周期相同,这5个点就是拉格朗日点。5个拉格朗日点中,还有2个点是最稳定的,木星的特洛伊带小行星就处在这两个点。
就实际应用来说,比如嫦娥登陆月球背面,因为月球遮挡信号,需要发射一颗中继通讯卫星来传递信号,这颗卫星就需要待在月球的拉格朗日点,中继卫星在这个点上可以保持位置稳定,持续发挥信号中继的作用。