原子光谱,是由原子中的电子在能量变化时所发射或吸收的一系列波长的光所组成的光谱。原子吸收光源中部分波长的光形成吸收光谱,为暗淡条纹;发射光子时则形成发射光谱,为明亮彩色条纹。两种光谱都不是连续的,且吸收光谱条纹可与发射光谱一一对应。每一种原子的光谱都不同,遂称为特征光谱。
中文名:原子光谱
外文名:Atomic spectrum
作 用:测量天体所含元素等
分 类:明亮彩色条纹、暗淡条纹
应 用:化学、天体物理学、等离子物理学
定义
原子中的电子可处于许多不同的运动状态,每一状态都具有一定能量,在一定条件下,分布在各个能级上的原子数是一定的,大多数原子都处于能量最低的状态,即基态。当原子受到电弧或电火花外来作用时,许多原子可以由能量较低的状态跃迁到能量较高的状态,这称为激发态。但跃迁到高能级E2的原子是不稳定的,约10~10S后,便要跃迁到某一低能级E1,并伴随着发出能量为△E=E2—E1的光子。根据公式E=hv,可得到发出光子的频率。
若用底片将此接收下来,便得一条谱线。实际上,与此同时还有其他原子要发生其他能级间的跃迁,伴随着这些跃迁还要发出其他频率的光来。将这些不同频率的光接收下来,便得一条条亮的谱线。这称为原子发射光谱。另一方面,若将一白光通过一物质,则物质中的原子将吸收其中某些频率的光而从低能级跃迁到高能级。这样,白光通过物质后将出现一系列暗的条纹,这样获得的光谱称为原子吸收光谱。原子发射光谱和原子吸收光谱统称为原子光谱。原子光谱中各条谱线的强度互不相同,它与相应的两能级间的跃迁几率有关。
原子光谱给出了原子中的能级分布,能级间的跃迁几率大小的信息,是原子结构的反映,是由结构决定的。光谱与结构之间存在着一一对应的内在联系。原子光谱是研究原子结构的重要方法,也可用来进行定性、定量分析
相关理论
原子的电子运动状态发生变化时发射或吸收的有特定频率的电磁频谱。原子光谱是一些线状光谱,发射谱是一些明亮的细线,吸收谱是一些暗线。原子的发射谱线与吸收谱线位置精确重合。不同原子的光谱各不相同,氢原子光谱最为简单,其他原子光谱较为复杂,最复杂的是铁原子光谱。用色散率和分辨率较大的摄谱仪拍摄的原子光谱还显示光谱线有精细结构和超精细结构,所有这些原子光谱的特征,反映了原子内部电子运动的规律性。
阐明原子光谱的基本理论是量子力学。原子按其内部运动状态的不同,可以处于不同的定态。每一定态具有一定的能量,它主要包括原子体系内部运动的动能、核与电子间的相互作用能以及电子间的相互作用能。能量最低的态叫做基态 ,能量高于基态的叫做激发态 ,它们构成原子的各能级(见原子能级)。高能量激发态可以跃迁到较低能态而发射光子,反之,较低能态可以吸收光子跃迁到较高激发态,发射或吸收光子的各频率构成发射谱或吸收谱。量子力学理论可以计算出原子能级跃迁时发射或吸收的光谱线位置和光谱线的强度。