狄拉克、海森伯和泡利对辐射场加以量子化。除了得到光的波粒二象性的明确表述以外,还解决了上述矛盾。电磁场在量子化以后,电场强度E和磁场强度H都成为算符。它们的各分量满足一定的对易关系,它们的"期待值"(即实验中的测量平均值)应满足量子力学的测不准关系,它们不可能同时具有确定值(即均方差同时为零)。作为一个特例,它们不可能同时确定为零。在没有光子存在的状态(它被称为是辐射场的真空态)中,E和H的平均值为零。但E与H的平均值不为零(否则均方;差就同时为零了)。这就是量子化辐射场的真空涨落。它与量子力学中谐振子的零点能十分类似。场在量子化以后,产生和湮没成为普遍的、基本的过程。因此在原子处于激发态时,虽然没有光子存在,电子仍能向低能态跃迁并产生光子。从辐射场量子理论的表述出发,可以计算各种带电粒子与电磁场相互作用基本过程的截面,例如康普顿效应、光电效应、轫致辐射、电子对产生和电子对湮没等。这些结果都是用微扰论方法取最低级不为零的近似得到的,与实验有较好的符合。但不论是那一种过程,计算高一级近似的结果时,一定遇到发散困难,即得到无限大的结果。这一点是J.R.奥本海默在1930年首先指出的。此后十几年中,尽管在许多电磁基本过程的研究上,以及高能辐射在物质中的贯穿和宇宙线的级联簇射等方面的研究上,量子电动力学继续有所发展,但在解决基本理论中的发散困难上仍处于相对的停滞状况。