量子力学的五大基本原理:
1.描写微观体系状态的数学量是 Hilbert 空间中的矢量,只相差一个复数因子的两个矢量,描写同一个物理状态。
2.(1) 描写微观体系物理量(可观测量)的是 Hilbert 空间内的 Hermitian 算符,如 A ;
(2) 物理量所能取的值 ai 是相应算符 A 的本征值;
(3) 一个任意态 |Ψ> 总可以用 A 的归一化本征态展开如下:
|Ψ> = ∑iCi|ai>
而物理量 A 在 |Ψ> 出现的几率与 |Ci|2 成正比(Born 统计解释)。
3.一个微观粒子在直角坐标下的位置算符 xm 与相应之正则动量算符 pm 有如下对易关系:
[xm,xn] = 0
[pm,pn] = 0
[xm,pn] = ihδmn
而不同粒子间的所有上述算符均可相互对易。
4.在 Schodinger 图景中,微观体系态矢量 |Ψ(t)> 随时间变化的规律由 Schodinger 方程给出:
ih ∂
∂t|Ψ(t)> = H|Ψ(t)>
与此相对应,在 Heisenberg 图景中,一个 Hermitian 算符 AH(t) 的运动规律由 Heisenberg 方程给出(假定AS 不显含时间):
d
dt AH(t) = 1
ih[ AH,H]
5.一个包含多个全同粒子的体系,在 Hilbert 空间中的态矢量对于任何一对粒子的交换是对称的(交换前后完全不变)或反对称(交换前后相差一个负号)。服从前者的粒子称为玻色子(boson),服从后者的粒子称为费米子(fermion)。
量子力学的应用:
1、晶格现象:音子、热传导
2、静电现象:压电效应
3、电导:绝缘体、导体、半导体、电导、能带结构、近藤效应、量子霍尔效应、超导现象
4、磁性:铁磁性
5、低温态:玻色-爱因斯坦凝聚、超流体、费米子凝聚态
6、维效应:量子线、量子点
7、量子信息学
目前研究的焦点在于一个可靠的、处理量子状态的方法。由于量子状态可以叠加的特性。理论上,量子计算机可以高度平行运算。它可以应用在密码学中。理论上,量子密码术可以产生完全可靠的密码。但是,实际上,目前这个技术还非常不可靠。另一个当前的研究项目,是将量子状态传送到远处的量子隐形传送。
8、在许多现代技术装备中,量子物理学的效应起了重要的作用。从激光、电子显微镜、原子钟到核磁共振的医学图像显示装置,都关键地依靠了量子力学的原理和效应。对半导体的研究导致了二极管和三极管的发明,最后为现代的电子工业铺平了道路。在核武器的发明过程中,量子力学的概念也起了一个关键的作用。